Cell Line Development – Data Handling
Summary
- Cell line development requires sample data be:
- Collated from different analyzers and formats
- Tracked between different plates and wells
- Maintained and accessed over weeks or months
- Biomek and DART software can handle this process behind the scenes of an automated process
- Data is reliably stored for traceability and easily accessed without the need for IT intervention
When automating a workflow, one often only thinks about the liquid handling aspects required to handle higher throughputs or reduce the time at the bench. However, the data that is generated from any workflow is what is truly valuable and yet still somehow an afterthought when it comes to automation.
Cell line development is one of many workflows that has significant data challenges. Like any screening process, the sample throughput provides a challenge from the sheer amount of data. This becomes even more challenging when multiple analytical instruments are used to generate different types of data, often in different formats. While all screens have some aspect of hit identification, the hit picking workflows require that the data must be tracked with these hits. Not only does this involve moving data across different plates and wells, but the overall process can extend for months. The data must be traced throughout this process to ensure that any cell lines that move into manufacturing have the requisite historical data (e.g. proof of monoclonality) and that all data is easily accessed for reporting needs.
Automation can help ensure accurate data tracking throughout a lengthy workflow, such as the monthslong multi-step cell line development workflow (Figure 1). While plate barcodes can be scanned on a variety of analyzers, manual workflows still resort to SOPs and training as a way to deal with the data challenge. However, copying and reformatting data in Microsoft Excel is inherently an errorprone process, particularly when trying to correlate data from different analyzers. For example, the CloneSelect Imager, which we use for monoclonality and growth determination, reports results by rows (A1, A2, A3…Figure 2A). In contrast, the Octet HTX we used to titer IgG production reports results by column (A1, B1, C1…, Figure 2B). If one tries to re-sort the Octet data in Microsoft Excel by well name, the wells still do not align with the CloneSelect data (A1, A10, A11…, Figure 2C). Collating different analyzer data in a single format is just one example of data pitfalls. Here we describe how automating cell line development on a Biomek i7 Workstation (Figure 3) overcame the many data challenges associated with this workflow.
Figure 1. Cell line development process. The data management for the highlighted steps are described here.
Figure 2. Data correlation. A) Imaging data from the CloneSelect Imager is reported in row-wise fashion. B) IgG titer data from the Octet HTX is reported in column-wise fashion. C) Attempting to “sort” the Octet data by Well still does not match the row-wise list of the CloneSelect for correlation.
Figure 3. The Biomek i7 Workstation, along with various integrated devices, was used to automate a cell line development workflow.
While one would expect any automation system to track and utilize data such as well volumes, storing and utilizing assay data adds another level of complexity. For the cell line development process, meaningful data was first generated when we assayed colony characteristics in semi-solid media on a ClonePix 2 device. During picking, the initial characteristics identified by the ClonePix 2, such as colony size and external fluorescence (a marker of antibody secretion) are linked to a barcoded destination plate and well. This data can be automatically imported into the Biomek software when the barcode is scanned. The data can then move with the samples as Biomek software automatically moves data as part of standard liquid transfer steps (Figure 4A). The data can also be stored in the DART database, and any time the plate barcode is scanned in the future, that corresponding data is automatically retrieved. DART provides the link between methods that are staggered over time (Figure 4B) – a key component in a lengthy workflow such as cell line development.
Figure 4. Automated data handling. A) Biomek software automatically transfers data from source to destination when a liquid handling step is executed. B) DART software provides a database that can be used to store data between runs and enables data to be accessed in a later run or for generating reports.
To further illustrate the data challenges of the cell line development workflow, we will describe a single day of the months-long process, and describe how these challenges were overcome through automated data software tools. Three weeks after plating cells by limiting dilution and identifying monoclonal wells, data moves and is used in the following steps (Figure 5):
- The barcoded plates are scanned as the move from the integrated incubator to the Biomek and a “Load Data” step in the method retrieves previous data associated with this plate. These include monoclonality data but also any earlier data deemed relevant such as ClonePix colony size and external fluorescence.
- The plates are scanned for confluence on the CloneSelect Imager and a “Create Data Set” step attaches this well-level data to the barcoded plate.
- Because we only want to assay protein titer from wells with colonies grown from a single cell, we can create a hit picking data set to identify only these wells for sampling. This data set (“MonoGrowth”) can drive the pipetting in a Biomek transfer step. The media from the sampled wells was consolidated and reformatted into 384-well Octet assay plates.
- The 384-well plate was assayed on the Octet and the resulting IgG concentrations were attributed to the assay wells through another “Create Data Set” step.
- Using a “Copy Data Set” step, the Octet assay results were transferred back into the original 96-well plates containing the colonies. This deconvolution step automatically handles the previously described problem of row vs. column lists.
- The new data is used to drive another hit picking transfer step such that the monoclonal wells with IgG expression above a set threshold are transferred to 24-well plates for continued expansion and testing. All of the essential data (monoclonality, confluence, IgG levels, etc.) are automatically moved forward to the new wells so there is no need to trace back to the original 96-wells to find the relevant data.
Figure 5. Automated data handling. Biomek and DART software can combine to retrieve previous data, add new assay data to plates, drive reformatting transfer steps, copy assay data back to the source wells, to ensure the proper hits are brought forward.
These steps of linking assay data to sample wells, correlating data from multiple analyzers, using data to drive transfers or hit picking, and bring all data forward for traceability, are repeated throughout the cell line development process. In addition, storing this data for all potential cell lines is essential as many will drop out at later points due to genomic instability or other undesirable attributes and it is impossible to know which will ultimately be the lines selected for cell banking.
Storing and utilizing data for automated runs is only part of the story. You must also be able to easily access the data when needed and the DART database can be accessed through multiple convenient means. For quick visualization in a user-friendly manner, the DART Data Browser (Figure 6A) can highlight method-, labware-, and well-level data in a standard Google Chrome Browser. Not only can this data be viewed remotely, but it can be refreshed to update with live data during runs. For exporting data in a usable form, the DART Report Builder can be used to generate reports in Microsoft Excel, with a simple interface to choose the data to include in a given report. All of this can be done without any assistance from IT resources – a common requirement for some larger data management systems.
Figure 6. Data viewing and reporting. Data must be easily accessed as needed and DART enables viewing from a standard web browser (A) or selection of data to be included in Microsoft Excel-based reports (B).
The data generated during any experiment is what makes that experiment worthwhile. Any errors in data handling can eliminate this value or perhaps even send a research program in the wrong direction. For a months-long workflow like cell line development, the risks of data loss or errors are even more significant, thus, tools to ensure data integrity are paramount. By making this data integrity process automatic and easily accessible, Biomek and DART software can provide true value to the cell line development process.
Biomek Automated Workstations are not intended or validated for use in the diagnosis of disease or other conditions. Beckman Coulter Life Sciences genomic reagent kits are for research use only.
Helpful Links
-
Online Datenarchiv
-
Application Notes
- 17-Marker, 18-Color Human Blood Phenotyping Made Easy with Flow Cytometry
- 21 CFR Part 11 Data Integrity for On-line WFI Instruments
- 8011+ Reporting Standards Feature and Synopsis
- Accurate enumeration of phytoplankton using FCM
- Accurately measures fine bubble size and particle count
- Achieving Compliant Batch Release – Sterile Parenteral Quality Control
- Air Particle Monitoring ISO 21501-4 Impact
- An Analytical Revolution: Introducing the Next Generation Optima AUC
- Analyzing Mussel/Mollusk Propagation using the Multisizer 4e Coulter Counter
- Automated 3D Cell Culture and Screening by Imaging and Flow Cytometry
- Automated Cell Transfection and Reporter Gene Assay
- Automated Cord Blood Cell Viability and Concentration Measurements Using the Vi‑CELL XR
- Automated Genomic Sample Prep Sample Quality Control
- Automated salt-assisted liquid-liquid extraction
- Automated Sample Preparation for the Monitoring of Pharmaceutical and Illicit Drugs by LC-MS/MS
- Automated Solid Phase Extraction Based Determination of Cannabinoids
- Automated Transfection Methods
- Automated XTT Assay for Cell Viability Analysis
- Automating a Linear Density Gradient for Purification of a Protein:Ligand Complex
- Automating Biopharma Quality Control to Reduce Costs and Improve Data Integrity
- Automating Bradford Assays
- Automating Cell-Based Processes
- Automating Cell Line Development
- Automating NGS workflows A Comparison Between A Traditional Liquid Handler and Biomek NGeniuS
- Automation of Illumina DNA Prep Kit on Biomek NGeniuS Next Generation Library Prep System
- Avanti J-15 Centrifuge Improves Sample Protection Maximizes Sample Recovery
- The New Avanti J-15 Centrifuge Time Saving Deceleration Profile Improves Workflow Efficiency
- Avanti JXN Protein Purification Workflow
- Avoid the Pitfalls When Automating Cell Viability Counting for Biopharmaceutical Quality Control
- Beer, Evaluation of Final Product and Filtration Efficiency
- Biomek Automated Genomic Sample Prep Accelerates Research
- Biomek Automated NGS Solutions Accelerate Genomic Research
- Biomek i-Series Automated AmpliSeq for Illumina® Library Prep Kit
- Biomek i-Series Automated Beckman Coulter Agencourt RNAdvance Blood Kit
- Biomek i-Series Automated Beckman Coulter Agencourt RNAdvance Cell
- Biomek i-Series Automated Beckman Coulter Agencourt SPRIselect for DNA Size Selection
- Biomek i-Series Automated Beckman Coulter AMPure XP PCR Purification System
- Biomek i-Series Automated IDT® xGen Hybridization Capture of DNA libraries on Biomek i7 Hybrid Genomics Workstation
- Biomek i-Series Automated Illumina® Nextera XT DNA Library Prep Kit
- Biomek i-Series Automated Illumina TruSeq DNA PCR-Free Library Prep Kit
- Biomek i-Series Automated Illumina TruSeq® Nano DNA Library Prep Kit
- Biomek i-Series Automated Illumina TruSeq® Stranded mRNA Sample Preparation Kit Protocol
- Biomek i-Series Automated Illumina TruSeq® Stranded Total RNA Sample Preparation Kit Protocol
- Biomek i–Series Automated Illumina® TruSight Tumor 170 32 Sample Method
- Biomek i-Series Automated KAPA HyperPrep and HyperPlus Workflows
- Biomek i-Series Automated New England Biolabs NEBNext® Ultra IITM DNA Library Prep Kit
- Biomek i-Series Automated SurePlex PCR and VeriSeq PGS Library Prep for Illumina®
- Biomek i-Series Automation of the Beckman Coulter Agencourt DNAdvance Genomic DNA isolation Kit
- Biomek i-Series Automation of the Beckman Coulter GenFind V3 Blood and Serum DNA Isolation Kit
- Biomek i-Series Automation of the Apostle MiniMax™ High Efficiency cfDNA Isolation Kit
- Preparation and purification of carbon nanotubes using an ultracentrifuge and automatic dispensing apparatus, and analysis using an analytical centrifuge system
- Cell Counting Performance of Vi–Cell BLU Cell Viability Analyzer
- Cell Culture Monitoring with the Vi-CELL MetaFLEX
- Viability Assessment of Cell Cultures Using the CytoFLEX
- Cell Line Development – Data Handling
- Cell Line Development – Limiting Dilution
- Cell Line Development – Selection and Enrichment
- Cellular Analysis using the Coulter Principle
- cfDNA Extraction Efficiency Affects NGS Data
- Changes to GMP Force Cleanroom Re-Classifications
- Characterizing Insulin as a Biopharmaceutical Using Analytical Ultracentrifugation
- Classifying a Small Cleanroom using the MET ONE HHPC 6+
- Clean Cabinet Air Particle Evaluation
- Cleanroom Routine Environmental Monitoring – FDA Guidance on 21 CFR Part 11 Data Integrity
- Comparing Data Quality & Optical Resolution of the Next Generation Optima AUC to the Proven ProteomeLab on a Model Protein System
- Conducting the ISO 14644-3 Cleanroom Recovery Test with the MET ONE 3400+
- Überlegungen zur Zellzählung beim Gebrauch von verschiedenen Zelltypen
- Consistent Cell Maintenance and Plating through Automation
- Control Standards and Method Recommendations for the LS 13 320 XR
- Counting Efficiency: MET ONE Air Particle Counters and Compliance to ISO-21501
- Critical Particle Size Distribution for Cement using Laser Diffraction
- Use Machine Learning Algorithms to Explore the Potential of Your High Dimensional Flow Cytometry Data Example of a 20–color Panel on CytoFLEX LX
- Detecting and counting bacteria with the CytoFLEX research flow cytometer: II-Characterization of a variety of gram-positive bacteria
- Detecting Moisture in Hydraulic Fluid, Oil and Fuels
- Detection of Coarse Particles in Silica Causing Cracks in Semiconductor Encapsulants
- Detection of foreign matter in plating solution using Multisizer4e
- Determination of Size and Concentration of Particles in Oils
- Efficient kit-free nucleic acid isolation uses a combination of precipitation and centrifugation separation methods
- dsDNA Quantification with the Echo 525 Liquid Handler for Miniaturized Reaction Volumes, Reduced Sample Input, and Cost Savings
- Compensation Setup For High Content DURAClone Reagents
- Echo System-Enhanced SMART-Seq v2 for RNA Sequencing
- Effective Miniaturization of Illumina Nextera XT Library Prep for Multiplexed Whole Genome Sequencing and Microbiome Applications
- Efficient Factorial Optimization of Transfection Conditions
- Enhancing Vaccine Development and Production
- Enumeration And Size Distribution Of Yeast Cells In The Brewing Industry
- European Pharmacopoeia EP 2.2.44 and Total Organic Carbon
- Evaluation of Instrument to Instrument Performance of the Vi-CELL BLU Cell Viability Analyzer
- Exosome-Depleted FBS Using Beckman Coulter Centrifugation: The cost-effective, Consistent choice
- Flexible ELISA automation with the Biomek i5 Workstation
- Friction Reduction System High Performance
- Fully-Automated Cellular Analysis by Flow Cytometry
- Fully Automated Determination of Benzodiazepines
- Fully Automated Determination of Cannabinoids
- Fully Automated Removal Cartridges
- Fully Automated Sample Preparation
- Get Control in GMP Environments
- Getting Started with Kaluza: Parameters
- g-Max: Added Capabilities to Beckman Coulter's versatile Ultracentrifuge Line
- Grading of nanocellulose using a centrifuge
- A method of grading nanoparticles using ultracentrifugation in order to determine the accurate particle diameter
- Grading of pigment ink and measurement of particle diameter using ultracentrifugation / dynamic light scattering
- HIAC Industrial – Our overview solution for fluid power testing for all applications
- A complete workflow for high-throughput isolation of DNA and RNA from FFPE samples using Formapure XL Total on the KingFisher™ Sample Purification System: an application for robust and scalable cancer research and biomarker discovery
- High-Throughput qPCR and RT-qPCR Workflows
- A Highly Consistent BCA Assay on Biomek i-Series
- A Highly Consistent Bradford Assay on Biomek i-Series
- A Highly Consistent Lowry Method on Biomek i-Series
- Highly Reproducible Automated Proteomics Sample Preparation on Biomek i-Series
- Cell Line Development – Hit Picking
- How to Use Violet Laser Side Scatter Detect Nanoparticle
- How Violet Side Scatter Enables Nanoparticle Detection
- HRLD Recommended Volume Setting
- Automating the Cell Line Development Workflow
- ICH Q2 – the Challenge of Measuring Total Organic Carbon in Modern Pharmaceutical Water Systems
- ICH Q2 – The Challenge of Measuring Total Organic Carbon in Modern Pharmaceutical Water Systems
- Illumina Nextera Flex for Enrichment on the Biomek i7 Hybrid Genomics Workstation
- Illumina TruSight Oncology 500 Automated on the Biomek NXᴾ Span-8 Genomics Workstation
- Importance of TOC measurement in WFI in light of European Pharmacopoeia change
- Temperature dependence of hydrodynamic radius of an intrinsically disordered protein measured in the Optima AUC analytical ultracentrifuge.
- Isolation of cell-free DNA (cfDNA) from plasma using Apostle MiniMax™ High Efficiency cfDNA Isolation kit— comparison of fully automated, semi-automated and manual workflow processing
- Issues with Testing Jet Fuels for Contamination
- Leveraging the Vi-CELL MetaFLEX for Monitoring Cell Metabolic Activity
- Linearity of BSA Using Absorbance & Interference Optics
- Long Life Lasers
- LS 13 320 XR: Sample Preparation - How to measure success
- Partikelgrössenanalyse einfach, aber effektiv und präzise
- Beckman’s LS 13 320 XR Vs. Malvern Mastersizer
- Verwenden von Algorithmen für maschinelles Lernen, um einen tiefen Einblick in die Zusammensetzung von Zellsubpopulationen zu erhalten
- Flow Cytometric Analysis of auto-fluorescent cells found in the marine demosponge Clathria prolifera
- Abgleich von Zellzählungsergebnissen zwischen Vi–CELL XR und Vi–CELL BLU
- Recommended cleaning procedure for the exterior surface of the MET ONE 3400+
- MET ONE Sensor Verification
- Metal colloid purification and concentration using ultracentrifugation
- Separation and purification of metal nanorods using density gradient centrifugation
- Method for Determining Cell Type Parameter Adjustment to Match Legacy Vi CELL XR
- High-throughput Miniaturization of Cytochrome P450 Time-dependent Inhibition Screening Using the Echo 525 Liquid Handler
- Miniaturization and Rapid Processing of TXTL Reactions Using Acoustic Liquid Handling
- Miniaturized Enzymatic Assays with Glycerol
- Miniaturized and High-Throughput Metabolic Stability Assay Enabled by the Echo Liquid Handler
- Miniaturized Multi-Piece DNA Assembly Using the Echo 525 Liquid Handler
- Miniaturized Sequencing Workflows for Microbiome and Metagenomic Studies
- Minimal Sample to Sample Carry Over with the HIAC 8011+
- Minimizing process variability in the manufacturing of bottled drinking water
- Modern Trends in Non‐Viable Particle Monitoring during Aseptic Processing
- Modular DNA Assembly of PIK3CA Using Acoustic Liquid Transfer in Nanoliter Volumes
- Multi-Wavelength Analytical Ultracentrifugation of Human Serum Albumin complexed with Porphyrin
- Nanoliter Scale DNA Assembly Utilizing the NEBuilder HiFi Cloning Kit with the Echo 525 Liquid Handler
- Particle diameter measurement of a nanoparticle composite - Using density gradient ultracentrifugation and dynamic light scattering
- Identification of Circulating Myeloid Cell Populations in NLRP3 Null Mice
- What to do now that ACFTD is discontinued
- Optimizing the HIAC 8011+ Particle Counter for Analyzing Viscous Fluids
- Optimizing the Multisizer 4e Coutler Counter for use with Small Apertures
- Optimizing Workflow Efficiency of Cleanroom Routine Environmental Monitoring
- Particle Counting in Mining Applications
- Particle testing in cleanroom high-pressure gas lines to ISO 14644 made easy with the MET ONE 3400 gas calibrations
- PCR Reaction Setup and AMPure XP Application
- PCR Reaction Setup Application
- Pharma Manufacturing Environmental Monitoring
- Pharma Manufacturing Paperless Monitoring
- Analysis of plant genome sizes using flow cytometry: a case study demonstrating dynamic range and measurement linearity
- Precision measurement of adipocyte size with Multisizer4e
- Principles of Continuous Flow Centrifugation
- Flow Cytometric Approach to Probiotic Cell Counting and Analysis
- Background Subtraction
- Calibrating the QbD1200 TOC Analyzer
- Detection Limit
- Inorganic Carbon Removal
- JP SDBS Validation
- Method Overview
- Overload Recovery
- QbD1200 Preparing Reagent Solution
- USP System Suitability
- Quality Control Electronic Records for 21 CFR part 11 Compliance
- Using the Coulter Principle to Quantify Particles in an Electrolytic Solution for Copper Acid Plating
- A Rapid Flow Cytometry Data Analysis Workflow Using Machine Learning- Assisted Analysis to Facilitate Identifying Treatment- Induced Changes
- Reducing Errors Associated with NGS Library Preparation
- Root Cause Investigations for Pharmaceutical Water Systems
- Scalable Plasmid Purification using CosMCPrep
- Full Automation of the SISCAPA® Workflow using a Biomek NXP Laboratory Automation Workstation
- Solid Phase Extraction
- Specification Comparison of Vi–CELL XR and Vi–CELL BLU
- Specifying Non-Viable Particle Monitoring for Aseptic Processing
- A Standardized, Automated Approach For Exosome Isolation And Characterization Using Beckman Coulter Instrumentation
- Streamlined Synthetic Biology with Acoustic Liquid Handling
- Switching from Oil Testing to Water and back using the HIAC 8011+ and HIAC PODS+
- Advanced analysis of human T cell subsets on the CytoFLEX flow cytometer using a 13 color tube-based DURAClone dry reagent
- Using k-Factor to Compare Rotor Efficiency
- Validation of On-line Total Organic Carbon Analysers for Release Testing Using ICH Q2
- Vaporized Hydrogen Peroxide Decontamination of Vi–CELL BLU Instrument
- Vesicle Flow Cytometry with the CytoFLEX
- Vi–CELL BLU im Fast Mode
- Vi-CELL BLU Regulatory Compliance - 21 CFR Part 11
- A workflow for medium-throughput isolation of cfDNA from plasma samples using Apostle MiniMax™ on the KingFisher™ Technology
- A High-Throughput, Automated Screening Platform for IgG Quantification During Drug Discovery and Development
- Adaptive Laboratory Evolution of Pseudomonas putida in the RoboLector
- Anaerobe Kultivierung von probiotischen Bakterien imBioLectorXTMikrobioreaktor
- Anaerobe Kultivierung von probiotischen Bakterien im BioLector XT Mikrobioreaktor
- Assay Assembly for Miniaturized Quantitative PCR in a 384-well Format Using the Echo Liquid Handler
- Automated Research Flow Cytometry Workflow Using DURA Innovations Dry Reagent Technology with the *Biomek i7 Automated Workstation and *CytoFLEX LX Flow Cytometer
- Automating antibody titration using a CytoFLEX LX analyzer Integrated with a Biomek i7 Multichannel workstation and Cytobank streamlined data analysis
- Automated IDT Alt-R CRISPR/Cas9 Ribonucleoprotein Lipofection Using the Biomek i7 Hybrid Automated Workstation
- Automation of protein A ELISA Assays using Biomek i7 hybrid workstation
- Monitoring E. coli Cultures with the BioLector and Multisizer 4e Instruments
- Monitoring Yeast Cultures with the BioLector and Multisizer 4e instruments
- Biomek i7 Hybrid Automated KAPA mRNA HyperPrep Workflow
- Biomek i-Series Automated Promega Wizard MagneSil Tfx™ Plasmid Purification System
- Cultivation of suspended plant cells in the BioLector®
- How to use R to rewrite FCS files with different number of channels
- Determination of cell death in the BioLector Microbioreactor
- DO-controlled fed-batch cultivation in the RoboLector®
- Screening of yeast-based nutrients for E. coli-based recombinant protein production using the RoboLector Platform
- E. coli fed-batch cultivation using the BioLector® Pro
- Echo System-Enhanced SMART-Seq v4 for RNA Sequencing
- Filling MicroClime Environmental Lids
- Fully Automated Peptide Desalting for Liquid Chromatography–Tandem Mass Spectrometry Analysis Using Beckman Coulter Biomek i7 Hybrid Workstation
- Getting Started with Kaluza: Data Scaling and Compensation Adjustment
- A Simple Guide to Selecting the Right Handheld Particle Counter for Monitoring Controlled Environments
- High throughput cultivation of the cellulolytic fungus Trichoderma reesei in the BioLector®
- High-throughput IgG quantitation platform for clone screening during drug discovery and development
- High-throughput Miniaturization of Cytochrome P450 Time-dependent Inhibition Screening Using the Echo 525 Liquid Handler
- Host Cell Residual DNA Testing in Reduced Volume qPCR Reactions Using Acoustic Liquid Handling
- Improved data quality of plate-based IgG quantification using Spark®’s enhanced optics
- Increased throughput for IgG quantification using Valita Titer 384-well plates
- Linearity of the Vi-CELL BLU Cell Counter and Analyzer
- Media optimization in the RoboLector platform for enhanced protein production using C. glutamicum
- MET ONE 3400+ LDAP & Active Directory connection Guide
- Migration of Panels Designed on the CytoFLEX S Flow Cytometer to CytoFLEX SRT Cell Sorter
- Miniaturization of an Epigenetic AlphaLISA Assay with the Echo Liquid Handler and the BMG LABTECH PHERAstar FS
- Miniaturization of Cytochrome P450 Time-dependent Inhibition Screening Using the Echo 555 Liquid Handler
- Miniaturized 16S rRNA Amplicon Sequencing with the Echo 525 Liquid Handler for Metagenomic and Microbiome Studies
- Miniaturized Enzo Life Sciences HDAC1 Fluor de Lys Assays Using an Echo Liquid Handler Integrated in an Access Laboratory Workstation
- Miniaturized EPIgeneous HTRF Assays Using the Echo Liquid Handler
- Miniaturized Gene Expression in as Little as 250 nL
- Miniaturized Genotyping Reactions Using the Echo Liquid Handler
- Mixed Mode Sorting on the CytoFLEX SRT
- Mode of operation of optical sensors for dissolved oxygen and pH value
- Nanoliter Scale High-Throughput Protein Crystallography Screening with the Echo Liquid Handler
- Nanoscale Sorting with the CytoFLEX SRT Cell Sorter
- Low-pH profiling in µL-scale to optimize protein production in H. polymorpha using the BioLector
- Optimized NGS Library Preparation with Acoustic Liquid Handling
- Anaerobe Kultivierung von probiotischen Bakterien imBioLectorXTMikrobioreaktor
- Plate Deposition Speed Comparison of Astrios and CytoFLEX SRT Cell Sorters
- Preparation of Mouse Plasma Microsamples for LC-MS/MS Analysis Using the Echo Liquid Handler
- Protocols for use of SuperNova v428 conjugated antibodies in a variety of flow cytometry applications
- Purifying viral vector with VTi 90 rotor and CsCl DGUC
- Rapid Measurement of IgG Using Fluorescence Polarization
- Rapid Rabbit IgG Quantification using the Valita Titer Assay
- Robust and High-Throughput SARS-CoV-2 Viral RNA Detection, Research, and Sequencing Using RNAdvance Viral and the OT-2 Platform
- Screening yeast extract to improve biomass production in acetic acid bacteria starter culture
- Single Cell Sorting with CytoFLEX SRT Cell Sorter
- Sorting Rare E-SLAM Hematopoietic Stem Cells Using CytoFLEX SRT and Subsequent Culture
- SWOFF The unrecognized yet indispensable sibling of FMO
- The scattered light signal: Calibration of biomass
- Utilization of the MicroClime Environmental Lid to Reduce Edge Effects in a Cell-based Proliferation Assay
- Vertical Rotor Case Study with Adenovirus
- Viral Vector Purification with Ultracentrifugation
- Whole Genome Sequencing of Microbial Communities for Scaling Microbiome and Metagenomic Studies Using the Echo 525 Liquid Handler and CosmosID
- Comparative Analysis of Cell-Free DNA Extraction Efficiency from Plasma
-
Broschüren, Flyer und Datenblätter
- Access Single Robot System for Synthetic Biology Workflows
- Automated Solutions for Cell Line Development
- Automated Solutions for ELISA
- HIAC 8011+ Liquid Particle Counting Systems
- HIAC 9703+ Sub-Visible Particulate Testing
- LS 13 320 XR - Laser Diffraction Particle Size Analyzer
- Download the Valita Titer Assay Brochure
-
Fallstudien
- Adenoviral Vectors Preparation
- Algae Biofuel Production
- Antibody and Media Development
- Autophagy
- B Cell Research
- Basic Research on Reproductive Biology
- Cardiovascular Disease Research
- Cell Marker Analysis
- Choosing a Tabletop Centrifuge
- Collagen Disease Treatment
- Contribute To Society By FCM
- Controlling Immune Response
- Creating Therapeutic Agents
- DNA Extraction from FFPE Tissue
- English Safety Seminar
- Equipment Management
- Exosome Purification Separation
- Fast, Cost-Effective and High-Throughput Solutions for DNA Assembly
- Future of Fishing Immune Research
- Hematopoietic Tumor Cells
- High-throughput next-generation DNA sequencing of SARS-CoV-2 enabled by the Echo 525 Liquid Handler
- iPS Cell Research
- Leveraging acoustic and tip-based liquid handling to increase throughput of SARS-CoV-2 genome sequencing
- Membrane Protein Purification X Ray Crystallography
- Organelles Simple Fractionation
- Particle Interaction
- Quality evaluation of gene therapy vector
- Retinal Cell Regeneration
- Sedimentary Geology
- Severe Liver Disease Treatment
- Tierra Biosciences reveals major molecular discovery
- Treating Cirrhosis
- University Equipment Management
- University of Texas Medical Branch UTMB Workflow Comparison Study with the AQUIOS CL Flow Cytometer
- Fundamentals of Ultracentrifugal Virus Purification
- Catalogs
- eBooks
- Flyers
-
Interviews
- Background and Current Status of the Introduction of Flow Cytometers
- Bacteriological-measurements-of-soil-bacteria-in-paddy-fields
- Central Diagnosis in the Treatment of Childhood Leukemia 1
- Central Diagnosis in the Treatment of Childhood Leukemia 2
- Contribution of Cytobank to 1-cell analysis of the cancer microenvironment
- Development of technology for social implementation of synthetic biology
- Dr Yabui UCF Lecture_old
- Flow Cytometry Testing in Hospital Laboratories
- Fundamentals of Ultracentrifugal Virus Purification
- Der MET ONE 3400+ automatisiert die routinemäßige Umgebungsüberwachung für GMP-Reinräume
- Tumor Suppressor Gene p53 research and DNA Cleanup Process
- Fundamentals of Ultracentrifugal Virus Purification
- Dr Yabui UCF Lecture
-
Posters
- AMP 2019: Correlation Between Mutations Found in FFPE Tumor Tissue and Paired cfDNA Samples
- Applications of Ultracentrifugation in Purification and Characterization of Biomolecules
- Automating Genomic DNA Extraction from Whole Blood and Serum with GenFind V3 on the Biomek i7 Hybrid Genomic Workstation
- ABRF 2019: Automated Genomic DNA Extraction from Large Volume Whole Blood
- Automated library preparation for the MCI Advantage Cancer Panel at Miami Cancer Institute utilizing the Beckman Coulter Biomek i5 Span-8 NGS Workstation
- Automating Cell Line Development for Biologics
- Cellular Challenges: Taking an Aim at Cancer
- Cell-Line Engineering
- Characterizing the Light-Scatter Sensitivity of the CytoFLEX Flow Cytometer
- ASHG 2019: Comparison between Mutation Profiles of Paired Whole Blood and cfDNA Samples
- ASHG 2019: Correlation Between Mutations Found in FFPE Tumor Tissue and Paired cfDNA Samples
- AACR 2019: Isolation and Separation of DNA and RNA from a Single Tissue or Cell Culture Sample
- Mastering Cell Counting
- AACR 2019: Correlation between Mutations Found in FFPE Tumor Tissue and Paired cfDNA Samples
- Preparing a CytoFLEX for Nanoscale Flow Cytometry
- A Prototype CytoFLEX for High-Sensitivity, Multiparametric Nanoparticle Analysis
- AGBT 2019: A Scalable and Automatable Method for the Extraction of cfDNA
- ABRF 2019: Simultaneous DNA and RNA Extraction from Formalin-Fixed Paraffin Embedded (FFPE) Tissue
- A Complete Automation and Reagent Workflow for Analysis of cfDNA: from Plasma to Variants
- Quantification of AAV Capsid Loading Fractions: A Comparative Study
- Using Standardized Dry Antibody Panels for Flow Cytometry in Response to SARS-CoV2 Infection
- Product Instructions
- Experimental Protocols
-
Whitepapers
- Centrifugation is a complete workflow solution for protein purification and protein aggregation quantification
- AUC Insights - Analysis of Protein-Protein-Interactions by Analytical Ultracentrifugation
- GMP-Reinraumklassifizierung und Routine-Umgebungsüberwachung
- AUC Insights - Assessing the quality of adeno-associated virus gene therapy vectors by sedimentation velocity analysis
- AUC Insights - Sample concentration in the Analytical Ultracentrifuge AUC and the relevance of AUC data for the mass of complexes, aggregation content and association constants
- Analyzing Biological Systems with Flow Cytometry
- Changes to USP Subvisible Particulate Matter
- Changes to USP Total Organic Carbon
- Charakterisierung des RNAdvance Viral XP-RNS-Extraktionskits unter Verwendung von AccuPlex™ SARS-CoV-2 Referenz-Materialkit
- CytoFLEX Platform Flow Cytometers with IR Laser Configurations: Considerations for Red Emitting Dyes
- Evaluation of the Analytical Performance of the AQUIOS CL Flow Cytometer in a Multi-Center Study
- Simultaneous Isolation and Parallel Analysis of gDNA and total RNA for Gene Therapy
- Hydraulic Particle Counter Sample Preparation
- Inaktivierung des COVID-19-Krankheitsvirus SARS-CoV-2 mit Lysepuffern zur viralen RNA-Extraktion von Beckman Coulter
- Liquid Biopsy Cancer Biomarkers – Current Status, Future Directions
- MET ONE 3400+ IT Implementation Guide
- Reproducibility in Flow Cytometry
- Improve the Efficiency of Large Scale Centrifugation
- SuperNova v428: New Bright Polymer Dye for Flow Cytometry
- Japan Document
-
Application Notes